1、肿瘤及感染免疫治疗2、靶向和敏感释放生物材料3、复杂药物和材料体系的分析方法4、功能性粘接和涂层5、Immunotherapy for Tumors and Infections6、Biomaterials for Targeted and Sensitive Release System 7、Analysis Method for Complex Drugs and Material Systems8、Functional Adhesives and Coatings
5848vip威尼斯电子游戏教授,博导,5848vip威尼斯电子游戏材料学院双聘教授,上海市科协委员,杨浦区科协委员,上海市粘接技术协会理事长,上海生物医学工程学会医用材料专委会委员,中国胶粘剂、胶体与聚合物等专业杂志编委,教育部首批优秀创新创业导师,多家高科技公司创始人。Professor of School of Medicine and School of Materials Science and Engineer, Tongji University, Member of Shanghai Association of Science, Member of Yangpu District Association of Science, President of Shanghai Association of Adhesive Technology, Member of Medical Materials Committee of Shanghai Society of Biomedical Engineering, Editorial Board of Chinese Journals of Adhesives, Colloids and Polymers, etc. Founders of several high-tech companies.
作为项目负责人及主要承担者完成了包括国家自然科学基金、科技部世博科技专项、上海市科技攻关重点项目、上海市重大科技基础研究项目、国家863科技专项、上海市基础研究重点项目、上海市纳米专项重点项目及企业横向项目等科研项目40余项。发表各类学术论文100篇余篇,其中SCI收录论文60余篇,获得上海市科技进步二等奖一项,授权发明专利50余项,多项科研成果实现了产业化。当前在研纵向项目:1.国家自然基金面上项目 “黑”细胞靶向调控肿瘤氧化应激微环境及促光热抗肿瘤效应 负责人 2020.1-2023.122.国家自然基金面上项目 应用纳米自组装技术克服治疗性疫苗载体免疫反应 负责人 2016.1-2019.12 3.国家自然基金面上项目 分域隔离纳米疫苗抗泛耐药肺炎克雷伯菌的作用机制研究 第二负责人 承担一半科研经费 2017-20204.中央高校基本科研经费学科交叉重点项目“纳米环巴胺协同PD-L1序贯高效杀伤耐药三阴性乳腺癌作用机制的实验研究 第二负责人 经费各半 2017-2019部分发表论文:1) Wang K, Wen SM, He LH, Li A, Li Y, Dong HQ, Li W, Ren TB, Shi DL, Li YY. “Minimalist” Nanovaccine Constituted from Near Whole Antigen for Cancer Immunotherapy ACS Nano, 2018, 12 (7), 6398–6409 2) Li Y, He LH, Dong HQ, Liu YQ, Wang K, Li A, Ren TB, Shi DL, Li YY. Fever‐Inspired Immunotherapy Based on Photothermal CpG Nanotherapeutics: The Critical Role of Mild Heat in Regulating Tumor Microenvironment. Advanced Science2018,5,6:1700805 ( 2018-03-25) 3) Luo S, Fan L, Yang K, Zhong Z, Wu XJ and Ren TB. In situ and controllable synthesis of Ag NPs in tannic acid-based hyperbranched waterborne polyurethanes to prepare antibacterial polyurethanes/Ag NPs composites. RSC Adv., 2018,8, 36571-36578 4) Luo S, Yang K, Zhong Z, Wu XJ and Ren TB.. Facile preparation of degradable multi-arm-star-branched waterborne polyurethane with bio-based tannic acid. RSC Adv., 2018,8, 37765-37773 5) Zhong Z, Luo S, Yang K, Wu XJ, Ren TB. High-performance anionic waterborne polyurethane/Ag nanocomposites with excellent antibacterial property via in situ synthesis of Ag nanoparticles.RSC Adv. 2017,7, 67: 42296-42304 6) Tang M, Dong HQ, Li YY, Ren TB. Harnessing the PEG-cleavable strategy to balance cytotoxicity, intracellular release and the therapeutic effect of dendrigraft poly-L-lysine for cancer gene therapy. Journal of Materials Chemistry B. 2016,4,7 1284-1295 7) Zhou JS, Li Y, Dong HQ, Yuan H, Ren TB, Li YY. Effect of monomer sequence of poly(histidine/ lysine) catiomers on gene packing capacity and delivery efficiency. RSC Advances . 2015,5(19): 14138-141468) Dong HQ, Dong HY, Xia WJ, Li YY , Ren TB. Self-assembled, Redox-sensitive, H-shaped Pegylated Methotrexate Conjugates with High Drug-carrying Capability for Intracellular Drug Delivery. MedChemComm, 2014,5, 147-1529) Li YY, Lei X, Dong HQ, Ren TB.Sheddable, degradable, cationic micelles enabling drug and gene delivery. RSC Advances, 2014,4, 8165-817610) Zhu HY,Dong CY,Dong HQ, Ren TB,Wen XJ, Su JS, Li YY. Cleavable PEGylation and Hydrophobic Histidylation of Polylysine for siRNA Delivery and Tumor Gene Therapy. ACS Appl. Mater. Interfaces, 2014,6(13), 10393–1040711) Dong HQ, Dong CY, Ren TB, Li YY, Shi DL.Surface-Engineered Graphene-Based Nanomaterials for Drug Delivery. Journal of Biomedical Nanotechnology. 2014, 10(9), 2086-210612) Ren TB, Wu W, Jia MH, Dong HQ, Li YY, Ou ZL. Reduction-Cleavable Polymeric Vesicles with Efficient Glutathione-Mediated Drug Release Behavior for Reversing Drug Resistance. ACS Appl. Mater. Interfaces 2013, 5 (21), 10721–1073013) Li YY, Li Lan, Dong HQ, Cai XJ, Ren TB. Pluronic F127 nanomicelles engineered with nuclear localized functionality for targeted drug delivery. Materials Science and Engineering: C, 2013, 33(5): 2698–270714) Chu M, Dong CY, Zhu HY, Cai XJ , Dong HQ, Ren TB,et al. Biocompatible polyethylenimine-graft-dextran catiomer for highly efficient gene delivery assisted by a nuclear targeting ligand. Polymer Chemisty, 2013,4, 2528-2539 15) Ren TB, Li L, Cai XJ et al. Engineered polyethylenimine/graphene oxide nanocomposite for nuclear localized gene delivery. Polymer chemistry,2012,9:1759-9954. 16) Ren TB, Liu QM, Lu H et al. Multifunctional Polymer Vesicles for Ultrasensitive Magnetic Resonance Imaging and Drug Delivery, Journal of materials chemistry 2012, 22, 12329-12338. 17) Lu H, Fan L, Liu QM, Wei JR, Ren TB et al. Preparation of water-dispersible silver-decorated polymer vesicles and micelles with excellent antibacterial efficacy. Polymer chemistry 2012,3(8): 2217-2227. 18) Ren TB, Feng Y, Zhang ZH, et al. Shell-sheddable micelles based on star-shaped poly(epsilon-caprolactone)-SS-poly(ethyl glycol) copolymer for intracellular drug release. Soft matter. 2011, 7(6): 2329-2331. 19) Ren TB, Wang A, Yuan WZ, et al. Synthesis, Self-Assembly, Fluorescence, and Thermosensitive Properties of Star-Shaped Amphiphilic Copolymers with Porphyrin Core. Journal of polymer science part a-polymer chemistry. 2011,49(10):2303-2313. 20) Ren TB; Xia WJ; Dong HQ. Sheddable micelles based on disulfide-linked hybrid PEG-polypeptide copolymer for intracellular drug delivery. Polymer. 2011,20(52): 3580-3586. 21) Ren TB, Xu N, Cao CH, et al. Preparation and Therapeutic Efficacy of Polysorbate-80-Coated Amphotericin B/PLA-b-PEG Nanoparticles. Journal of biomaterials science- polymer edition. 2009, 20(10): 1369-1380. 22) Ren TB, Weigel T, Groth T et al. Microwave plasma surface modification of silicone elastomer with Allylamine for improvement of biocompatibility. Journal of biomedical materials research part A. 2008,86A(1): 209-219. As the project leader and main participant, More than 40 research projects have been completed, including the National Natural Science Foundation of China, the Expo Science and Technology Project of the Ministry of Science and Technology, the key projects of science and technology in Shanghai, the major basic research projects of science and technology in Shanghai, the 863 national science and technology project, the key projects of basic research in Shanghai, the key projects of nanotechnology in Shanghai and enterprise entrusted projects. More than 100 academic papers have been published, of which more than 60 papers have been indexed in SCI. Currently research projects including:1.National Natural Science Foundation Project (31971323): Black cell target-regulating tumor oxidative stress microenvironment for improved photothermal therapy (2020.1-2023.12) 2.National Natural Science Foundation Project (81571801) Suppression of Immune Response of Therapeutic Vaccine Carrier by Nano-engineering Technology (2016.1-2019.12) 3.National Natural Science Foundation Project (8167 1944) Study on the Mechanism of Subarea Isolation of Nanovaccine against Pan-resistant Klebsiella pneumoniae (2017.1-2020.12) 4.Key projects of fundamental scientific research funds in universities “Experimental study on the mechanism of sequential and highly effective killing of drug-resistant triple-negative breast cancer by nanocyclopatamine combined with PD-L1” (2017-2019) Selective Publications:1) Wang K, Wen SM, He LH, Li A, Li Y, Dong HQ, Li W, Ren TB, Shi DL, Li YY. “Minimalist” Nanovaccine Constituted from Near Whole Antigen for Cancer Immunotherapy ACS Nano, 2018, 12 (7), 6398–6409 2) Li Y, He LH, Dong HQ, Liu YQ, Wang K, Li A, Ren TB, Shi DL, Li YY. Fever‐Inspired Immunotherapy Based on Photothermal CpG Nanotherapeutics: The Critical Role of Mild Heat in Regulating Tumor Microenvironment. Advanced Science2018,5,6:1700805 ( 2018-03-25) 3) Luo S, Fan L, Yang K, Zhong Z, Wu XJ and Ren TB. In situ and controllable synthesis of Ag NPs in tannic acid-based hyperbranched waterborne polyurethanes to prepare antibacterial polyurethanes/Ag NPs composites. RSC Adv., 2018,8, 36571-36578 4) Luo S, Yang K, Zhong Z, Wu XJ and Ren TB.. Facile preparation of degradable multi-arm-star-branched waterborne polyurethane with bio-based tannic acid. RSC Adv., 2018,8, 37765-37773 5) Zhong Z, Luo S, Yang K, Wu XJ, Ren TB. High-performance anionic waterborne polyurethane/Ag nanocomposites with excellent antibacterial property via in situ synthesis of Ag nanoparticles.RSC Adv. 2017,7, 67: 42296-42304 6) Tang M, Dong HQ, Li YY, Ren TB. Harnessing the PEG-cleavable strategy to balance cytotoxicity, intracellular release and the therapeutic effect of dendrigraft poly-L-lysine for cancer gene therapy. Journal of Materials Chemistry B. 2016,4,7 1284-1295 7) Zhou JS, Li Y, Dong HQ, Yuan H, Ren TB, Li YY. Effect of monomer sequence of poly(histidine/ lysine) catiomers on gene packing capacity and delivery efficiency. RSC Advances . 2015,5(19): 14138-141468) Dong HQ, Dong HY, Xia WJ, Li YY , Ren TB. Self-assembled, Redox-sensitive, H-shaped Pegylated Methotrexate Conjugates with High Drug-carrying Capability for Intracellular Drug Delivery. MedChemComm, 2014,5, 147-1529) Li YY, Lei X, Dong HQ, Ren TB.Sheddable, degradable, cationic micelles enabling drug and gene delivery. RSC Advances, 2014,4, 8165-817610) Zhu HY,Dong CY,Dong HQ, Ren TB,Wen XJ, Su JS, Li YY. Cleavable PEGylation and Hydrophobic Histidylation of Polylysine for siRNA Delivery and Tumor Gene Therapy. ACS Appl. Mater. Interfaces, 2014,6(13), 10393–1040711) Dong HQ, Dong CY, Ren TB, Li YY, Shi DL.Surface-Engineered Graphene-Based Nanomaterials for Drug Delivery. Journal of Biomedical Nanotechnology. 2014, 10(9), 2086-210612) Ren TB, Wu W, Jia MH, Dong HQ, Li YY, Ou ZL. Reduction-Cleavable Polymeric Vesicles with Efficient Glutathione-Mediated Drug Release Behavior for Reversing Drug Resistance. ACS Appl. Mater. Interfaces 2013, 5 (21), 10721–1073013) Li YY, Li Lan, Dong HQ, Cai XJ, Ren TB. Pluronic F127 nanomicelles engineered with nuclear localized functionality for targeted drug delivery. Materials Science and Engineering: C, 2013, 33(5): 2698–270714) Chu M, Dong CY, Zhu HY, Cai XJ , Dong HQ, Ren TB,et al. Biocompatible polyethylenimine-graft-dextran catiomer for highly efficient gene delivery assisted by a nuclear targeting ligand. Polymer Chemisty, 2013,4, 2528-2539 15) Ren TB, Li L, Cai XJ et al. Engineered polyethylenimine/graphene oxide nanocomposite for nuclear localized gene delivery. Polymer chemistry,2012,9:1759-9954. 16) Ren TB, Liu QM, Lu H et al. Multifunctional Polymer Vesicles for Ultrasensitive Magnetic Resonance Imaging and Drug Delivery, Journal of materials chemistry 2012, 22, 12329-12338. 17) Lu H, Fan L, Liu QM, Wei JR, Ren TB et al. Preparation of water-dispersible silver-decorated polymer vesicles and micelles with excellent antibacterial efficacy. Polymer chemistry 2012,3(8): 2217-2227. 18) Ren TB, Feng Y, Zhang ZH, et al. Shell-sheddable micelles based on star-shaped poly(epsilon-caprolactone)-SS-poly(ethyl glycol) copolymer for intracellular drug release. Soft matter. 2011, 7(6): 2329-2331. 19) Ren TB, Wang A, Yuan WZ, et al. Synthesis, Self-Assembly, Fluorescence, and Thermosensitive Properties of Star-Shaped Amphiphilic Copolymers with Porphyrin Core. Journal of polymer science part a-polymer chemistry. 2011,49(10):2303-2313. 20) Ren TB; Xia WJ; Dong HQ. Sheddable micelles based on disulfide-linked hybrid PEG-polypeptide copolymer for intracellular drug delivery. Polymer. 2011,20(52): 3580-3586. 21) Ren TB, Xu N, Cao CH, et al. Preparation and Therapeutic Efficacy of Polysorbate-80-Coated Amphotericin B/PLA-b-PEG Nanoparticles. Journal of biomaterials science- polymer edition. 2009, 20(10): 1369-1380. 22) Ren TB, Weigel T, Groth T et al. Microwave plasma surface modification of silicone elastomer with Allylamine for improvement of biocompatibility. Journal of biomedical materials research part A. 2008,86A(1): 209-219.